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EFFECT OF VIBRATIONAL EXCITATION OF MOLECULES

ON THE VELOCITY OF SOUND IN A HIGH-TEMPERATURE DIATOMIC GAS

UDC 533.6 (075.8)Yu. N. Voroshilova and M. A. Rydalevskaya

A formula for the velocity of sound, which is valid not only for barotropic gases, is derived on the basis
of methods of the kinetic theory of gases. This formula is specified for various stages of relaxation
of a high-temperature diatomic gas in the approximation of the model of anharmonic oscillators.
A dependence between the populations of vibrational levels of molecules and the velocity of sound is
found.

Key words: velocity of sound, anharmonic oscillators, vibrational relaxation, populations of
vibrational levels.

The velocity of sound, which is one of the most important characteristics of gaseous media, is usually
considered as the velocity of propagation of small perturbations. For vortex-free flows, the squared velocity of
sound is identified with the coefficient in the wave equation for the velocity potential (see, e.g., [1, 2]). In the
Lagrangian integral for a vortex-free flow of a barotropic gas moving in the field of conservative forces independent
of time, the squared velocity is neglected, the resultant expression is differentiated with respect to time, and the
continuity equation with omitted terms of the second order of smallness is used. As a result, we obtain the wave
equation

∂2ϕ

∂t2
=
dp

dρ
div v =

dp

dρ
Δϕ,

where v is the macroscopic velocity of the gas, ϕ is the potential of this velocity, p is the pressure, and ρ is the
density. Hence, we obtain a2 = dp/dρ (a is the velocity of sound).

In most cases, the gas with its physical and chemical processes cannot be considered as barotropic. Under
these conditions, methods of the kinetic theory of gases [3–5] can be used to choose the governing macroparameters
and to close the system of gas-dynamic equations.

Collisions of molecules accompanied by exchange of energy and elementary chemical acts occur with different
frequencies [6]. In addition to locally equilibrium flows, therefore, we have to consider various relaxation regimes of
the flow in the approximation of an ideal fluid.

The limiting solutions f0
i of the kinetic equations corresponding to different stages of gas relaxation are

written as [5]

f0
i =

sim
3
i

h3
exp

[
γ0

(mic
2

2
+ ε̃i

)
+

Λ∑
λ=1

γλψ
λ
i

]
, i = 1, I. (1)

Here f0
i is the distribution function of microparticles (atoms and molecules) of the ith kind (the subscript i indicates

the particle kind and the set of quantum numbers characterizing the level of its internal energy), h is the Planck
constant, mi and si are the mass and statistical weight of the ith molecule, c = u−v is the own (thermal) velocity
of the ith molecule, u is the microparticle velocity in the global (motionless) coordinate system, v(r, t) is its local
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gas-dynamic velocity, ε̃i is the internal energy of the molecule, which can transform to translational energy (and
back) in collisions participating in formation of distributions (1), ψ0

i = mic
2/2 + ε̃i and ψλ

i (λ = 1,Λ) are the
independent additive invariants of such collisions (the set of the invariants ψλ

i depends on the gas composition and
on the relaxation stage considered), and γλ (λ = 0,Λ) are the parameters depending on coordinates and time.

The distribution functions (1) are usually normalized to the quantities ψ0 = ẽ, ψλ, and λ = 1,Λ (densities
of the total values of energy of the above-considered types and invariants ψλ

i ):

ψ0(r, t) = ẽ =
∑

i

∫
f0

i

(mic
2

2
+ ε̃i

)
dc =

∑
i

n0
i

(
− 3

2
1
γ0

+ ε̃i

)
; (2)

ψλ(r, t) =
∑

i

∫
f0

i ψ
λ
i dc =

∑
i

n0
iψ

λ
i , λ = 1,Λ; (3)

n0
i =

∫
f0

i dc = si exp
(
γ0ε̃i +

Λ∑
λ=1

γλψ
λ
i

)(
− 2πmi

γ0h2

)3/2

. (4)

The right side of Eq. (2) implies the equality γ0 = −1/(kT ) (k is the Boltzmann constant and T is the gas
temperature).

The densities of the extensive macroparameters ψλ (λ = 0,Λ) and the velocity v satisfy the equations that
are derived from the kinetic equations and have the form [7]

dv

dt
= F − 1

ρ
∇p; (5)

dẽ

dt
+ (ẽ+ p) div v = Δẽ; (6)

dψλ

dt
+ ψλ div v = Δψλ, λ = 1,Λ. (7)

Here

p =
1
3

∑
i

∫
f0

i mic
2 dc = −n

0

γ0
= n0kT ; (8)

F is the external force acting on a unit mass of the gas; n0 =
∑

i

n0
i and Δẽ, and Δψλ are the relaxation terms

characterizing the changes in the governing macroparameters due to nonequilibrium processes at this stage of
relaxation.

It should be noted that the mass density ρ can be presented as a linear combination of the parameters ψλ

(λ = 1,Λ). Indeed, some of the additive invariants ψλ
i correspond to the condition of conservation of microparticles,

which do not change during collisions forming the quasi-steady state considered. In this case, the mass density ρ

equals the sum of the quantities ψλ, which are products of the densities of these particles and their mass mλ. The
continuity equation follows from Eq. (7).

It follows from the facts discussed above and from Eqs. (2)–(4) and (8) that the dependence of the parameters
in Eqs. (5)–(7) on coordinates and time is determined by the functions γ0(r, t) [or T (r, t)] and γ1(r, t), . . . , γΛ(r, t).

By studying the Boltzmann entropy corresponding to different quasi-steady states of gas mixtures, Ry-
dalevskaya [5] demonstrated that the quantities γλ are intensive parameters conjugated with extensive parameters
whose densities ψλ are determined by Eqs. (2)–(4). It was also shown in [5] that the Jacobian of the transition from
extensive to intensive parameters is positive:

det =
D(ψ0, ψ1, . . . , ψΛ)
D(γ0, γ1, . . . , γΛ)

> 0. (9)

Hence, system (5)–(7) can be considered as a system of differential equations for the unknown functions γ0(r, t)
[or T (r, t)], γ1(r, t), . . . , γΛ(r, t), and v(r, t) [8].

If the nonequilibrium processes are “frozen” or the flow is locally equilibrium, the right sides of Eqs. (6) and
(7) are equal to zero. System (5)–(7) written in terms of intensive parameters has the form [8]
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dv

dt
= F +

1
γ0

(
H̃∇γ0 +

∑
Ψλ∇γλ

)
; (10)

dγλ

dt
= −χλ div v, λ = 0,Λ. (11)

In Eqs. (10) and (11), H̃ = (ẽ + p)/ρ is the specific enthalpy of the gas, Ψλ = ψλ/ρ are the specific values of the
summed additive invariants ψλ (λ = 1,Λ) and χλ = detλ / det, where det is the determinant of Eq. (9) and detλ are
the determinants of Eq. (9) with the columns of derivatives with respect to γλ replaced by the column of coefficients
at div v in Eqs. (6) and (7).

From Eqs. (6) and (7) with zero right sides, Eq. (8) for the pressure p, and the equation of continuity, we
obtain the integrals of motion [7]

Ψλ = ψλ/ρ = const, λ = 1,Λ; (12)

γ0H̃ +
Λ∑

λ=1

γλΨλ = const. (13)

Note that equality (13) can be considered as a generalization of the adiabat.
For vortex-free flows and F = −∇U , we obtain the Lagrangian integral in the form

∂ϕ

∂t
+
v2

2
+ U + H̃ = 0. (14)

In studying the velocity of sound considered as the velocity of propagation of small perturbations, the gas
velocity is assumed to be small, and the remaining gas-dynamic parameters, including γλ (λ = 0,Λ), are assumed
to be only slightly different from constants.

Restricting ourselves to quantities of the first order of smallness and neglecting terms of the form (v · ∇)γλ

in Eq. (11) and v2/2 in Eq. (14), we obtain

∂γλ

∂t
= −χλ div v, λ = 0,Λ; (15)

∂ϕ

∂t
+ U + H̃ = 0. (16)

Using the conventional approach [1, 2], we differentiate Eq. (16) with respect to time. Assuming the potential U to
be independent of time, we obtain the equality ∂2ϕ/∂t2 +∂H̃/∂t = 0. After that, using the integrals of motion (12)
and (13) to calculate ∂H̃/∂t, replacing the partial derivatives ∂γλ/∂t in the resultant formula by expressions (15),
and taking into account the relation div v = Δϕ, we obtain the wave equation [8]

∂2ϕ

∂t2
= − 1

γ0

(
H̃χ0 +

∑
λ

Ψλχλ

)
Δϕ, (17)

where the coefficient can be identified with the squared velocity of sound a.
Presenting the specific enthalpy H̃ and the summed additive invariants Ψλ in Eq. (17) in the form of the

ratios of the densities of the corresponding quantities ẽ + p and ψλ to the mass density of the gas ρ, multiplying
and dividing the right side of Eq. (17) by the total number of particles n0 in a unit volume, and using Eq. (8) for
the pressure p, we obtain the expression for the squared velocity of sound in the form

a2 = κ

p

ρ
, κ = 〈h̃〉χ0 +

∑
λ

〈ψλ〉χλ (18)

[〈h̃〉 = (ẽ + p)/n0 and 〈ψλ〉 = ψλ/n
0 are the mean enthalpy and invariants ψλ

i per one molecule]. It should also
be noted that Eq. (8) for the pressure p, the dependence of n0 =

∑
i

n0
i on the parameters γλ [see Eq. (4)], the

equation of continuity, and Eqs. (11) allow us to present the coefficient at Δϕ in Eq. (17) (and, hence, the value
of a2) in the form a2 = dp/dρ. (Note that this expression in our case is the ratio of the total differentials of pressure
and density.)
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A chemically homogeneous diatomic gas is a fairly simple subject of research, which, nevertheless, makes it
possible to study various stages of translational-rotational and vibrational relaxation. Owing to the development of
molecular lasers in last decades, there appeared many publications dealing with research of nonequilibrium states
of a high-temperature diatomic gas (see, e.g., [3–6] and the references therein).

Diatomic molecules are known to possess rotational and vibrational degrees of freedom at high temperatures;
vibrational degrees of freedom are usually described by the anharmonic oscillator model:

εv = vε1 + Δεv(v − 1), ε1 = hν(1 − 2x), Δε = xhν, v ∈ [0, vd]. (19)

Here εv is the vibrational energy of the molecule, counted from the zero level, v is the number of the level of
vibrational energy, ν is the frequency of vibrations of atoms in the molecule, x� 1 is the anharmonicity constant,
and vd is the vibrational level corresponding to dissociation energy.

During molecular collisions, changes in translational and rotational energies of molecules occur much more
often than vibrational energy exchange:

(v) + (v1) � (v′) + (v′1), (20)

which can also occur with different frequencies [6].
According to [9, 10], the probability of vibrational exchange (20) increases by more than an order of magni-

tude owing to halving of the quantity α = |εv′ + εv′
1
− εv − εv1 |/(εv + εv1), which is the ratio of the defect of the

resonance of vibrational energy to its value before the collision. Under these conditions, we can divide the process
of vibrational relaxation of a diatomic gas into several stages and write the system of inequalities in the form [5]

τRT � τ
1/8
V T � τ

1/4
V T � τ

1/2
V T � τVRT .

Here τRT is the time of relaxation in terms of translational and rotational degrees of freedom, τα
V T are the times of

partial vibrational relaxation [at these stages, formation of quasi-steady states involves, in addition to translational
and rotational transitions of molecules, transitions (20) where the relative defect of the resonance is α < 1/8, 1/4,
and 1/2, respectively), and τVRT is the total relaxation time (time needed for thermodynamic equilibrium to be
established).

The behavior of gas-dynamic parameters and populations of vibrational levels on the boundaries of the
corresponding relaxation zones inside the region of the normal shock wave arising in equilibrium and vibrationally
nonequilibrium flows of a diatomic gas and behind this region was studied in [11–13]. Closed systems of gas-dynamic
equations were obtained for different stages of relaxation of a diatomic gas in these papers, and the properties of
these systems were considered for conditions of local equilibrium and in the cases where the influence of slow physical
and chemical processes can be neglected. In the present paper, we consider the changes in the velocity of sound at
these stages of relaxation.

Specifying Eq. (18) for the above-indicated stages of relaxation of a diatomic gas modeled by anharmonic
oscillators, we can estimate the effect of molecular collisions of various types on the velocity of sound.

At the stage of completion of translational-rotational relaxation, the additive invariants in distributions (1)
are the translational-rotational energy and the number of the level of vibrational energy of the molecule, which
are described by the following governing macroparameters: density of translational-rotational energy ẽ = eRT ,
population of vibrational levels nv (v = 0, vd ), and mean-mass velocity v. The coefficient κ in Eq. (18) has the
form

κ = 〈hRT 〉χ0 +
vd∑

v=0

〈nv〉χv+1. (21)

Here 〈hRT 〉 = (eRT + p)/n, 〈nv〉 = nv/n, n =
vd∑

v=0

nv, nv = ZRT (γ0) exp γv+1, and ZRT (γ0) is the statistical sum of

the molecule over the translational and rotational degrees of freedom. It can be easily demonstrated that κ = 7/5
in the classical description of rotational degrees of freedom [7].

At the stages of completion of partial vibrational relaxation V T (α) (α = 1/8, 1/4, and 1/2), in addition to
the invariant corresponding to the total (translational–rotational–vibrational) energy of the molecule and ψ1

i = 1,
distribution (1) contains another additive invariant ψ2

i = ψα(v)ε1 (Λ = 2), which is a quasi-harmonic approxima-
tion of vibrational energy (19) of the anharmonic oscillator with a relative accuracy α (see [5]). The governing

372



v

y

10 50403020

_10

_70

_60

_50

_40

_30

_20

0

0

1

2

3

4

[

1 5432

1.4

1.0

1.1

1.2

1.3

0 T .10-3, Ê

1
2
3

4

Fig. 1 Fig. 2

Fig. 1. Relative populations of vibrational levels of nitrogen molecules for different values of T1/T :
curves 1–3 show the stages of partial vibrational relaxation V T (1/2) for T1/T = 4 (1), 6 (2), and 8
(3); curve 4 shows the equilibrium state.

Fig. 2. Coefficient κ of molecular nitrogen versus temperature for different values of T1: curves
1–3 show the stages of partial vibrational relaxation V T (1/2) for T1 = 2 · 103 (1), 3 · 103 (2), and
4 · 103 K (3); curve 4 shows the equilibrium state.

macroparameters are the density of the total energy ẽ = e, the number of particles n0 = n, the total value n〈ψα〉ε1
of the additional additive invariant ψα(v)ε1 [〈ψα〉 is the mean value of ψα(v) per one molecule], and the velocity v.
The coefficients κ in Eq. (18) have the form

κ = 〈h〉χ0 + χ1 + 〈ψα〉ε1χα (22)

[〈h〉 = (e+ p)/n]. Relations (22) and (18) describe the analytical dependence of the velocity of sound on the
parameters γ0 (or T ), γ1 (or n), and γ2.

After the relaxation process is completed, distribution (1) contains only the invariants corresponding to
conservation of the total energy and the number of particles. The governing macroparameters are e, n, and v.
Under these conditions, the coefficient κ in Eq. (18) acquires the form

κ = 〈h〉χ0 + χ1. (23)

Relations (22) and (23) allow us to determine the dependence of the velocity of sound on vibrational popu-
lations of the molecules.

At the stages of partial vibrational relaxation, the relative vibrational populations can be presented as
xv(α) = nv(α)/n0(α) = exp [γ0εv + γ2ψα(v)ε1]. At the lower vibrational levels, we obtain a piecewise-linear
function ψα(v) = v. If the equality γ0 = −1/(kT ) and the presentation γ2 = 1/(kT )− 1/(kT1) (T1 is the so-called
temperature of the first vibrational level) are used, the relative populations xv(α) at these levels are consistent
with Treanor’s distribution [14]. The ratio of temperatures T1/T determines the degree of vibrational excitation
of gas molecules. The higher the value of T1/T , the higher the populations of vibrational levels are above the
Boltzmann distributions for T1/T > 1 [5]. This phenomenon is most profoundly manifested at the last-but-one
stage of vibrational relaxation (t ∼ τ

1/2
V T ), which is of greatest interest, because nonequilibrium quasi-steady flows

with α < 1/2 are also frequently encountered, in addition to locally equilibrium flows (α ≈ 1).
Figure 1 shows the relative populations of vibrational levels for a nitrogen molecule y = lnxv/(ε1/(kT1)) at

the stage of partial vibrational relaxation V T (1/2) and in the equilibrium state.
Figure 2 shows the dependence of the coefficient κ(T ) calculated by Eq. (22) for molecular nitrogen at the

stage of relaxation V T (1/2) for n = nL (nL is the Loschmidt number) and different values of T1, and also the
dependence κ(T ) in the state of thermodynamic equilibrium calculated by Eq. (23).
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By an example of molecular nitrogen, Figs. 1 and 2 illustrate the dependence between the populations
of vibrational levels of molecules and the value of the coefficient κ. In the equilibrium state at sufficiently low
temperatures (where vibrational excitation can be neglected), we have κ = 1.4. As the temperature increases and
the populations of vibrational levels also increase, the value of κ monotonically decreases and approaches a certain
constant value as the temperature becomes sufficiently high. Under nonequilibrium conditions, an increase in the
value of T1/T increases the populations of the lower and medium vibrational levels and decreases the value of κ in
Eq. (18), i.e., the velocity of sound is lower for identical density and pressure. We also obtained similar dependences
for other gases.
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